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Finite-time singularity in the vortex dynamics of a string
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We analyze the dynamics of a perfectly flexible string with a constant length and a vanishing inner friction.
The local angular velocity of line elements in this seemingly simple mechanical system is shown to have many
mathematical and physical properties in common with vorticity in the three-dimensional incompressible Euler
equation. It is demonstrated that initially smooth vorticity fields lose their regularity within finite time in a
self-similar process, and that the peak vorticity growsvag,~(T—1t) . [S1063-651X99)15002-5

PACS numbdrs): 47.10+g, 47.15.Ki

[. INTRODUCTION (where Oss=<L), the dynamical evolution of the system can
be determined by solving the equations
The question of whether smooth solutions to the equations
of fluid dynamics lose their regularity after a finite time is Pr 9 ( ar

(€

crucial for an understanding of phenomena as diverse as P=(9—s T

transition to turbulencél], drop formation[2], and porous
media convection3]. In spite of considerable analytical
[1,4,5) and numerica]6—8] work, however, even the funda-
mental problem of a finite-time singularity in the three- 2
dimensional(3D) incompressible Euler equation is still un- (ﬂ) =1 )
resolved. Under such circumstances continuous systems for Js
which the existence of a finite-time singularity can be unam-
biguously extracted from the governing equations are of parEquation(1), which can be derived from the variational for-
ticular interest. mulation of classical mechanigsee below describes the

In the present work we describe a simple one-dimensionaicceleration of a particle at locatisrue to variations of the
mechanical system which admits a self-similar solutionforce f=oe acting in a tangential directioe= Jr/ds within
describing finite-time singularity. Although our system—a the string. The straimr(s,t) with physical dimensiom?/s?
frictionless string—is neither a solid nor a fluid, surprisingly (force per mass densitylays the same role in the string as
many of its mathematical and physical properties resembldoes the pressure in fluid dynamics. It has to be determined
those of an ideal fluid described by the three-dimensionads a part of the solution so as to satisfy the “no-stretch con-
Euler equation. In particular, our model seems to represeriition” [Eq. (2)] analogous to the incompressibility condi-
an overlooked example of a nonfluid system whose dynamtion in fluid dynamics. The former expresses the fact that the
ics is strongly controlled by a quantity which is analogous tolength |dr| of each infinitesimal element of the string must
vorticity in fluid dynamics. What is more, this quantity turns remain constant during the evolution. Once the solution
out to diverge with time according to the same law as idr(s,t),o(s,t)] of Egs.(1) and(2) has been determined, the
hypothesized(but not provedl for the three-dimensional quantities
Euler equation.

subject to the constraint

ov Je
w=eX—, K=_—_
Js

s’ ©)

Il. MATHEMATICAL MODEL

Consider a string with a vanishing cross section, constantan be defined, which characterize the dynamical and geo-
lengthL, no inner friction, and perfect flexibility. The latter metrical properties of the evolving string. It can be verified
implies that the string can be bended and knotted withoutising the identitygv/ ds= de/ gt that w=eX J.e deserves to
elastic resistance(A long golden necklace under zero- be called “vorticity,” since it describes the instantaneous
gravity conditions would provide a reasonable experimentaangular velocity of a line elemenlr =eds, whereasc is the
realization of this model on length scales larger than, say, 1fbcal curvature of the string. Equatioi®) and (2) have the
cm,) If the positionr(s,t) and velocityv(s,t)=dr/dt are  following properties in common with the incompressible 3D
known at some instarit=0 as a function of the arclenggh  Euler equation.
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FIG. 2. Evolution of the system near the finite-time singularity:
evolution from the initial conditiorr =[cos€)e, + sin@)e,], ar/dt @ Temporal behavior of the .peak.vortlulty close to smgularlty time
= 0.1 - cos§)e,+ sin@e,] as obtainecE frorsn)e; num(e)ﬁcy:lﬂ solution 28 obtained from full numerical simulatiofh)—(d) Solution ag a

. . - ai . . — _ ,B . _3
of Egs.(1) and(2). The loops at the tips of the stringtat 15.35 are function of the self S|m_|lar varlza_bzlg s(T—1)"%, W]"t,h '8_ 2
invisibly small. All quantities are in dimensionless units. Compensated straig(¢) =(T—t)* o (b), curvaturef’(£)=(T
—1)Pk (c), and vorticity B¢f' (£)=(T—t)w (d) are shown. Full

. . . i i [f-similarit o) [fi
(1) Both systems describe the motion of a continuous d|s1Ines correspond to solutions of the self-similarity equato [fis

L - i . obtained from Eq(9)], and crosses correspond to time-dependent
tribution of particles COnStralned solely by the req.u'rememnumerical simulations. All quantities are in dimensionless units.
that the lengthof the string or the volume(of the fluid) be
conserved. In the absence of the inner forces due to strain or _ _
pressure, the position of the strings,t) or the Lagrangian difference method with adaptive mesh refinement. In the
coordinates (a,t) of the fluid obeys?r/9t?>=0. course of evolution the initially circular string becomes dis-
(2) Both systems are derived from variational principlestorted. After the inward-moving parts have crossednich
with identical mathematical structures. Indeed, @g.corre-  does not contradict the 2D dynamics if the string is infinitely
sponds to the extremals of the space-time integral of théhin), two loops appear whose size diminishes rapidly. We
kinetic energy density 4r/dt)? from the initial position observe that both vorticity and curvature tend to infinity as
r(s,0) to the final positiorr(s,T) subject to the constraint the size of the small loops tends to zero. tAs T~15.448,
(or/9s)?=1. The Euler equations®r/ot>=—Vp corre- the diameter of the loops shrinks to zero, the vorticity and
sponds to the extremals of the space-time integral oturvature diverge, and the computational expense grows
(ar/at)? from the initial Lagrangian positions(a,0)=a to  without bounds, suggesting the occurrence of a finite-time
the final positionsr(a,T) subject to the incompressibility singularity. As shown in Fig. @), the peak vorticity di-
constraint Detfr/9a) =1 [9]. The strain and pressure which verges aswma.,~(T—t)"%, while the maximum curvature is
have to be determined as a part of the solution appear deund to behave likecy,~(T—t) %2 While the curvature
Lagrange multiplyers in the variational problem. peaks at the tips of the small loops, say0, the vorticity is
(3) Both systems are nonlocal in space due to the nonlocantisymmetric with respect t8=0. In reality, the string will
character of the strain or pressure. They conserve total kilecome unstable against perburbations along the third di-
netic energy and angular momentum, while enstrdpy mension once the curvature becomes high enough to activate
= [w?ds or, respectively() = [ w?dr is not in general con- the effects of inner friction and elasticity. This effect is not
stant. considered in the present two-dimensional model.
Although the solution blows up at= T, physical intuition
IIl. NUMERICAL SOLUTION suggests the possibility that solutions might again exist after
the topological transition from a loop to a cusplike structure
It is well known from everyday experience that strings has occurred, i.e., fdar>T. Indeed, if we force the numerical
can be easily twisted and knotted. If there is no inner frictioncode to overrun the singularity time by deliberately switch-
or elasticity to counteract the formation of increasingly smalling off the time-step control, we obtain the result that after
scales, the curvature and other quantities must obviously dthe “crack of the whip” two sharp bends emanate from the
verge within a finite time. singularity point, resembling shock waves. Whereas the
In Fig. 1 we show the simplest prototype of such a finite-question of self-similar blowup in the Euler equation is an
time blowup, as obtained from a numerical solution of Eqs.open question, we shall demonstrate below that the finite-
(1) and(2) for the 2D motion of a closed loop using a finite- time singularity of the string occurs in a self-similar manner.

FIG. 1. Finite-time singularity in a string: Two-dimensional
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IV. SELF-SIMILARITY SOLUTION

We start by representing(s,t) for the 2D case through a
single function ¢(s,t) as e=cos)e+sin(p)g,. This
choice automatically satisfies the no-stretch condit{@h
After differentiation with respect tg, Eq. (1) can be rewrit-
ten in terms¢(s,t) ando(s,t) as

bu= 0 Psst 20505, (4)
5

2__ 2
=0 ds— Ts.

In two dimensionsw= we, and k= keX e, with w= ¢, and
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far field strain. An asymptotic solution of E¢LO) (which for
&>1 simplifies to BEQ..+29,,=0) leads to the limiting
behaviorg~ ¢2~?2. Since Eq.(10) is invariant under the
transformationg— A g and&é— A2, the location of the sin-
gular point can be chosen §s=1 without loss of general-
ity. As a result, there is only one free parameggy(,) for

the problem consisting of E410) and a total of five bound-
ary and matching conditions. We are thus left with a nonlin-
ear eigenvalue problem for the determinatiory(f) and the
unknown scaling exponerg.

In order to solve Eq(10), we employ a two-sided shoot-
ing method starting fromé, . First the free parameter
9¢:6(€,) is determined so as to satisfy the conditigf0)
=0. Then the solution af— is calculated. By repeating
the computations for various values gft turns out that the

k= ¢, respectively. We note parenthetically that if the so-condition at infinity cannot be satisfied unless this parameter

lution of Eq. (5) is symbolically written asr=L(w,«), Eq.

is in the vicinity of 2. Although we do not possess a rigorous

(4) can be transformed into a system of two first-order equagXistence proof for Eq(10) with g=3, it is likely that it

tions, namely,w,=Lxs+2Lsx and k;= ws. Inspection of

represents the exact solution. The universal profiles of strain,

the first of these equations shows that intensification of locaYOrticity, and curvature obtained from the self-similarity so-
vorticity, the analog of vortex stretching in fluid dynamics, lutions are shown in Figs.(8)—2(d).

occurs as a result of either nonuniform curvature or nonuni-

form strain.
If self-similar behavior in the vicinity of the singularity

s=0 andt=T is expected to occur, the fields must be of the

forms

$= raf(i) , ©)
5

7 Tyg(i) ,
5

where we have definetl=T—t. Insertion of this ansatz into
Egs.(4) and(5) shows thato=0 andy=28—2 are neces-

(@)

The existence of the self-similar solution implies that in
the vicinity of the singularity
Tmin~ (T—1), wmax'\”(T_t)_la
(13)

KmaXN(T_t)_slza lminN(T_t)S/Zy
wherel i, is the size of the singular region. It is interesting
that the strain at the tip of the loop tends to zerat-asT,
which is reminiscent of low-pressure filaments in 3D turbu-
lent shear flowg10]. Moreover, the spatial behavior of the
strain far away from the singularity is characterized dy
~s%2 and the far field strain is independent of time.

As can be seen from Figs(l8—-2(d), the self-similarity
solution is in excellent agreement with the behavior of the

sary conditions for self-similar behavior. Introducing the fully time-dependent simulations. In particular, the values of

self-similarity variable é&=s/7?, the ordinary differential
equations for the unknown functiong¢) and g(¢) are
readily derived from Eqsi4) and (5) as

[B2E2—qlf e+ [ B(B+1)é—20]f =0, 8
9§§+[,32§2_9]f§:0- 9

The guantityf, can be eliminated by multiplying E¢8) by
f, and insertingfé from Eq.(9). This leads to a single self-
similarity equation

(B2 = 0)Qsee+ (2BE—39,)9:=0.

Observe that Eq(10) has a singular poing, at ﬁzgi
=g(¢,) (not to be confused with the poigt=0 where the
finite-time singularity occups From f§>0 and Eq.(9), it

(10

follows that g../(g—B2%)=0 which demonstrates that

both g;; and g— 82£% must change sign acrosg, . Thus

9:(&4)=0, i.e., the singular point is a turning point. Equa-

tion (10) is completed by the boundary conditig(0)=0
(from symmetry, by the matching conditionsg(¢,)

=B%E2, 9:(&,) = B(B+1)£,12, andg,(£,) =0, and by the

the compensated strain, curvature, and vorticity calculated at
different times collapse onto a single curve depending on the
self-similarity variable¢. This indicates that the self-similar
solution does not only exist but is also stable.

V. SUMMARY AND CONCLUSIONS

In summary, we have demonstrated that a finite-time sin-
gularity can occur in a simple one-dimensional mechanical
system. It is likely that inclusion of a viscosity, i.ev,
=(0€)st vvgs, Would permit one to study questions of tur-
bulence decay, small scale intermittency, and vorticity align-
ment[11]. Finally it should be noted that the present system
could be experimentally studied under microgravity condi-
tions.

A final comment is in order regarding the relation of the
present results to the question of singularity in the Euler
equation. It is known from the three-dimensional Euler equa-
tion [4] that the time-integral ofw,,, Mmust diverge upon
approach to the singularity time. If a similar theorem would
hold for the present problenfwhich we do not know at
presen), our simulations would not be in contradiction to its
conclusions. Introducing the quantity(t)=(dsw/E) %*

conditiong,—0 até—o, ensuring a smooth match with the with dimension of length, wher&= [v?ds is the kinetic
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energy, it would follow from this theorem thdi (t)dt— oo ACKNOWLEDGMENTS
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