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Finite-time singularity in the vortex dynamics of a string
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We analyze the dynamics of a perfectly flexible string with a constant length and a vanishing inner friction.
The local angular velocity of line elements in this seemingly simple mechanical system is shown to have many
mathematical and physical properties in common with vorticity in the three-dimensional incompressible Euler
equation. It is demonstrated that initially smooth vorticity fields lose their regularity within finite time in a
self-similar process, and that the peak vorticity grows asvmax;(T2t)21. @S1063-651X~99!15002-5#

PACS number~s!: 47.10.1g, 47.15.Ki
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I. INTRODUCTION

The question of whether smooth solutions to the equati
of fluid dynamics lose their regularity after a finite time
crucial for an understanding of phenomena as diverse
transition to turbulence@1#, drop formation@2#, and porous
media convection@3#. In spite of considerable analytica
@1,4,5# and numerical@6–8# work, however, even the funda
mental problem of a finite-time singularity in the thre
dimensional~3D! incompressible Euler equation is still un
resolved. Under such circumstances continuous system
which the existence of a finite-time singularity can be una
biguously extracted from the governing equations are of p
ticular interest.

In the present work we describe a simple one-dimensio
mechanical system which admits a self-similar solut
describing finite-time singularity. Although our system—
frictionless string—is neither a solid nor a fluid, surprising
many of its mathematical and physical properties resem
those of an ideal fluid described by the three-dimensio
Euler equation. In particular, our model seems to repres
an overlooked example of a nonfluid system whose dyn
ics is strongly controlled by a quantity which is analogous
vorticity in fluid dynamics. What is more, this quantity turn
out to diverge with time according to the same law as
hypothesized~but not proved! for the three-dimensiona
Euler equation.

II. MATHEMATICAL MODEL

Consider a string with a vanishing cross section, cons
lengthL, no inner friction, and perfect flexibility. The latte
implies that the string can be bended and knotted with
elastic resistance.~A long golden necklace under zero
gravity conditions would provide a reasonable experimen
realization of this model on length scales larger than, say
cm.! If the position r (s,t) and velocityv(s,t)5]r /]t are
known at some instantt50 as a function of the arclengths
PRE 591063-651X/99/59~3!/3637~4!/$15.00
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~where 0<s<L!, the dynamical evolution of the system ca
be determined by solving the equations

]2r

]t 2
5

]

]s S s
]r

]sD ~1!

subject to the constraint

S ]r

]sD
2

51 ~2!

Equation~1!, which can be derived from the variational fo
mulation of classical mechanics~see below! describes the
acceleration of a particle at locations due to variations of the
force f5se acting in a tangential directione5]r /]s within
the string. The strains(s,t) with physical dimensionm2/s2

~force per mass density! plays the same role in the string a
does the pressure in fluid dynamics. It has to be determi
as a part of the solution so as to satisfy the ‘‘no-stretch c
dition’’ @Eq. ~2!# analogous to the incompressibility cond
tion in fluid dynamics. The former expresses the fact that
length udr u of each infinitesimal element of the string mu
remain constant during the evolution. Once the solut
@r (s,t),s(s,t)# of Eqs.~1! and~2! has been determined, th
quantities

v5e3
]v

]s
, k5

]e

]s
~3!

can be defined, which characterize the dynamical and g
metrical properties of the evolving string. It can be verifi
using the identity]v/]s5]e/]t that v5e3] te deserves to
be called ‘‘vorticity,’’ since it describes the instantaneo
angular velocity of a line elementdr5eds, whereask is the
local curvature of the string. Equations~1! and ~2! have the
following properties in common with the incompressible 3
Euler equation.
3637 ©1999 The American Physical Society
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~1! Both systems describe the motion of a continuous d
tribution of particles constrained solely by the requirem
that the length~of the string! or the volume~of the fluid! be
conserved. In the absence of the inner forces due to stra
pressure, the position of the stringr (s,t) or the Lagrangian
coordinatesr (a,t) of the fluid obey]2r /]t250.

~2! Both systems are derived from variational principl
with identical mathematical structures. Indeed, Eq.~1! corre-
sponds to the extremals of the space-time integral of
kinetic energy density (]r /]t)2 from the initial position
r (s,0) to the final positionr (s,T) subject to the constrain
(]r /]s)251. The Euler equation]2r /]t252“p corre-
sponds to the extremals of the space-time integral
(]r /]t)2 from the initial Lagrangian positionsr (a,0)5a to
the final positionsr (a,T) subject to the incompressibility
constraint Det(]r /]a)51 @9#. The strain and pressure whic
have to be determined as a part of the solution appea
Lagrange multiplyers in the variational problem.

~3! Both systems are nonlocal in space due to the nonlo
character of the strain or pressure. They conserve tota
netic energy and angular momentum, while enstropyV
5*v2ds or, respectively,V5*v2dr is not in general con-
stant.

III. NUMERICAL SOLUTION

It is well known from everyday experience that strin
can be easily twisted and knotted. If there is no inner frict
or elasticity to counteract the formation of increasingly sm
scales, the curvature and other quantities must obviously
verge within a finite time.

In Fig. 1 we show the simplest prototype of such a fini
time blowup, as obtained from a numerical solution of E
~1! and~2! for the 2D motion of a closed loop using a finite

FIG. 1. Finite-time singularity in a string: Two-dimension
evolution from the initial conditionr5@cos(s)ex1sin(s)ey#, ]r /]t
50.1@2cos(s)ex1sin(s)ey# as obtained from a numerical solutio
of Eqs.~1! and~2!. The loops at the tips of the string att515.35 are
invisibly small. All quantities are in dimensionless units.
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difference method with adaptive mesh refinement. In
course of evolution the initially circular string becomes d
torted. After the inward-moving parts have crossed~which
does not contradict the 2D dynamics if the string is infinite
thin!, two loops appear whose size diminishes rapidly. W
observe that both vorticity and curvature tend to infinity
the size of the small loops tends to zero. Ast→T'15.448,
the diameter of the loops shrinks to zero, the vorticity a
curvature diverge, and the computational expense gr
without bounds, suggesting the occurrence of a finite-ti
singularity. As shown in Fig. 2~a!, the peak vorticity di-
verges asvmax;(T2t)21, while the maximum curvature is
found to behave likekmax;(T2t)23/2. While the curvature
peaks at the tips of the small loops, says50, the vorticity is
antisymmetric with respect tos50. In reality, the string will
become unstable against perburbations along the third
mension once the curvature becomes high enough to act
the effects of inner friction and elasticity. This effect is n
considered in the present two-dimensional model.

Although the solution blows up att5T, physical intuition
suggests the possibility that solutions might again exist a
the topological transition from a loop to a cusplike structu
has occurred, i.e., fort.T. Indeed, if we force the numerica
code to overrun the singularity time by deliberately switc
ing off the time-step control, we obtain the result that af
the ‘‘crack of the whip’’ two sharp bends emanate from t
singularity point, resembling shock waves. Whereas
question of self-similar blowup in the Euler equation is
open question, we shall demonstrate below that the fin
time singularity of the string occurs in a self-similar mann

FIG. 2. Evolution of the system near the finite-time singulari
~a! Temporal behavior of the peak vorticity close to singularity tim
as obtained from full numerical simulation.~b!–~d! Solution as a
function of the self-similar variablej5s(T2t)2b, with b5

3
2 .

Compensated straing(j)5(T2t)222bs ~b!, curvaturef 8(j)5(T
2t)bk ~c!, and vorticity bj f 8(j)5(T2t)v ~d! are shown. Full
lines correspond to solutions of the self-similarity equation~10! @f is
obtained from Eq.~9!#, and crosses correspond to time-depend
numerical simulations. All quantities are in dimensionless units
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IV. SELF-SIMILARITY SOLUTION

We start by representinge(s,t) for the 2D case through a
single function f(s,t) as e5cos(f)ex1sin(f)ey . This
choice automatically satisfies the no-stretch condition~2!.
After differentiation with respect tos, Eq. ~1! can be rewrit-
ten in termsf(s,t) ands(s,t) as

f tt5sfss12ssfs , ~4!

f t
25sfs

22sss. ~5!

In two dimensionsv5vez and k5ke3ez with v5f t and
k5fs , respectively. We note parenthetically that if the s
lution of Eq. ~5! is symbolically written ass5L(v,k), Eq.
~4! can be transformed into a system of two first-order eq
tions, namely,v t5Lks12Lsk and k t5vs . Inspection of
the first of these equations shows that intensification of lo
vorticity, the analog of vortex stretching in fluid dynamic
occurs as a result of either nonuniform curvature or nonu
form strain.

If self-similar behavior in the vicinity of the singularity
s50 andt5T is expected to occur, the fields must be of t
forms

f5ta f S s

tbD , ~6!

s5tggS s

tbD , ~7!

where we have definedt5T2t. Insertion of this ansatz into
Eqs.~4! and ~5! shows thata50 andg52b22 are neces-
sary conditions for self-similar behavior. Introducing th
self-similarity variable j5s/tb, the ordinary differential
equations for the unknown functionsf (j) and g(j) are
readily derived from Eqs.~4! and ~5! as

@b2j22g# f jj1@b~b11!j22gj# f j50, ~8!

gjj1@b2j22g# f j
250. ~9!

The quantityf j can be eliminated by multiplying Eq.~8! by
f j and insertingf j

2 from Eq. ~9!. This leads to a single self
similarity equation

~b2j22g!gjjj1~2bj23gj!gjj50. ~10!

Observe that Eq.~10! has a singular pointj* at b2j
*
2

5g(j* ) ~not to be confused with the pointj50 where the
finite-time singularity occurs!. From f j

2>0 and Eq.~9!, it
follows that gjj /(g2b2j2)>0 which demonstrates tha
both gjj and g2b2j2 must change sign acrossj* . Thus
gjj(j* )50, i.e., the singular point is a turning point. Equ
tion ~10! is completed by the boundary conditiongj(0)50
~from symmetry!, by the matching conditionsg(j* )
5b2j

*
2 , gj(j* )5b(b11)j* /2, andgjj(j* )50, and by the

conditiongj→0 atj→`, ensuring a smooth match with th
-

-

al

i-

far field strain. An asymptotic solution of Eq.~10! ~which for
j@1 simplifies tobjgjjj12gjj50! leads to the limiting
behaviorg;j222/b. Since Eq.~10! is invariant under the
transformationsg→lg andj→l1/2j, the location of the sin-
gular point can be chosen asj* 51 without loss of general-
ity. As a result, there is only one free parametergjjj(j* ) for
the problem consisting of Eq.~10! and a total of five bound-
ary and matching conditions. We are thus left with a nonl
ear eigenvalue problem for the determination ofg(j) and the
unknown scaling exponentb.

In order to solve Eq.~10!, we employ a two-sided shoot
ing method starting fromj* . First the free paramete
gjjj(j* ) is determined so as to satisfy the conditiongj(0)
50. Then the solution atj→` is calculated. By repeating
the computations for various values ofb it turns out that the
condition at infinity cannot be satisfied unless this parame
is in the vicinity of 3

2. Although we do not possess a rigorou
existence proof for Eq.~10! with b5 3

2 , it is likely that it
represents the exact solution. The universal profiles of str
vorticity, and curvature obtained from the self-similarity s
lutions are shown in Figs. 2~b!–2~d!.

The existence of the self-similar solution implies that
the vicinity of the singularity

smin;~T2t !, vmax;~T2t !21,
~11!

kmax;~T2t !23/2, l min;~T2t !3/2,

wherel min is the size of the singular region. It is interestin
that the strain at the tip of the loop tends to zero ast→T,
which is reminiscent of low-pressure filaments in 3D turb
lent shear flows@10#. Moreover, the spatial behavior of th
strain far away from the singularity is characterized bys
;s3/2, and the far field strain is independent of time.

As can be seen from Figs. 2~b!–2~d!, the self-similarity
solution is in excellent agreement with the behavior of t
fully time-dependent simulations. In particular, the values
the compensated strain, curvature, and vorticity calculate
different times collapse onto a single curve depending on
self-similarity variablej. This indicates that the self-simila
solution does not only exist but is also stable.

V. SUMMARY AND CONCLUSIONS

In summary, we have demonstrated that a finite-time s
gularity can occur in a simple one-dimensional mechan
system. It is likely that inclusion of a viscosity, i.e.,vt
5(se)s1nvss, would permit one to study questions of tu
bulence decay, small scale intermittency, and vorticity alig
ment@11#. Finally it should be noted that the present syste
could be experimentally studied under microgravity con
tions.

A final comment is in order regarding the relation of th
present results to the question of singularity in the Eu
equation. It is known from the three-dimensional Euler eq
tion @4# that the time-integral ofvmax must diverge upon
approach to the singularity time. If a similar theorem wou
hold for the present problem~which we do not know at
present!, our simulations would not be in contradiction to i
conclusions. Introducing the quantityl (t)5(]sv/E)22/3

with dimension of length, whereE5*v2ds is the kinetic



r haft
of

3640 PRE 59A. THESS, O. ZIKANOV, AND A. NEPOMNYASHCHY
energy, it would follow from this theorem that* l (t)dt→`
is a condition for singular behavior. If blowup is self-simila
with l (t);(T2t)p, thenp> 2

3 . Our observationp5 3
2 is not

in conflict with this condition.
pl
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